My current research explores the orbital dynamics of the three-body problem. By studying the mathematical structures that govern the movement of our solar system, I hope to open doors to new mission concepts that allow us to go farther with less fuel.

I recently presented at the AAS/AIAA Space Flight Mechanics Conference on how to use invariant funnels to target landing orbits. Here I demonstrated the technique on a landing orbit to the north pole of Jupiter’s moon Europa.


  • Blanchard, J. T., Lo, M. W., Landau, D., Anderson, B. D., & Close, S. (2021). Invariant Funnels for Resonant Landing. AAS/AIAA Space Flight Mechanics Conference.
  • Lo, M. W., Blanchard, J. T., Anderson, B. D., & Burns, R. (2020). NTR 51766: Invariant Funnels Along Resonant Landing Orbits For Optimal Navigation & Mission Design.
  • Lo, M. W., Blanchard, J. T., Landau, D., Anderson, B. D., & Burns, R. (2020). NTR 51765: Using Poincare Map To Find Resonant Trajectories To Land On Secondary Bodies (Planets and Moons) In the Three Body Problem.
  • Blanchard, J. T., Anderson, B. D., Lo, M. W., & Close, S. (2020). Low energy capture into high inclination orbits for ocean worlds missions. AAS/AIAA Astrodynamics Specialist Conference.
  • Blanchard, J. T. (2018). Uncertainty in Optical Particulate Counting Sensors (Vol. 12) [Brigham Young University].